Serveur d'exploration sur l'Indium

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Growth of InN films and nanorods by H-MOVPE

Identifieur interne : 007896 ( Main/Repository ); précédent : 007895; suivant : 007897

Growth of InN films and nanorods by H-MOVPE

Auteurs : RBID : Pascal:07-0195723

Descripteurs français

English descriptors

Abstract

InN films and nanorods were grown by hydride metalorganic vapor phase epitaxy (H-MOVPE) and the effects of growth temperature, and NH3/TMIn and HCl/TMIn ratios on morphological dependences were studied. The growth habit of InN varied from thin film to microrod to nanorod to no deposition as the growth conditions were changed about transition from growth to etching conditions. The growth and etch regimes were also predicted by chemical equilibrium calculations of In-C-H-Cl-N-inert system. The optical properties of InN nanorods and columnar structured films were measured by room temperature PL and a maximum intensity was observed at 1.08 eV for both structures.

Links toward previous steps (curation, corpus...)


Links to Exploration step

Pascal:07-0195723

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en" level="a">Growth of InN films and nanorods by H-MOVPE</title>
<author>
<name>HYUN JONG PARK</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>Department of Chemical Engineering, University of Florida, Gainesville, P.O. Box 116005</s1>
<s2>FL 32611-6005</s2>
<s3>USA</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
</inist:fA14>
<country>États-Unis</country>
<placeName>
<region type="state">Floride</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Kryliouk, Olga" uniqKey="Kryliouk O">Olga Kryliouk</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>Department of Chemical Engineering, University of Florida, Gainesville, P.O. Box 116005</s1>
<s2>FL 32611-6005</s2>
<s3>USA</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
</inist:fA14>
<country>États-Unis</country>
<placeName>
<region type="state">Floride</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Anderson, Tim" uniqKey="Anderson T">Tim Anderson</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>Department of Chemical Engineering, University of Florida, Gainesville, P.O. Box 116005</s1>
<s2>FL 32611-6005</s2>
<s3>USA</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
</inist:fA14>
<country>États-Unis</country>
<placeName>
<region type="state">Floride</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Khokhlov, Dmitry" uniqKey="Khokhlov D">Dmitry Khokhlov</name>
<affiliation wicri:level="4">
<inist:fA14 i1="02">
<s1>Physics Department, Moscow State University</s1>
<s2>Moscow, 119992</s2>
<s3>RUS</s3>
<sZ>4 aut.</sZ>
</inist:fA14>
<country>Russie</country>
<placeName>
<settlement type="city">Moscou</settlement>
<region>District fédéral central</region>
</placeName>
<orgName type="university">Université d'État de Moscou</orgName>
</affiliation>
</author>
<author>
<name sortKey="Burbaev, Timur" uniqKey="Burbaev T">Timur Burbaev</name>
<affiliation wicri:level="1">
<inist:fA14 i1="03">
<s1>Lebedev Physical Institute</s1>
<s2>Moscow 119991</s2>
<s3>RUS</s3>
<sZ>5 aut.</sZ>
</inist:fA14>
<country>Russie</country>
<placeName>
<settlement type="city">Moscou</settlement>
<region>District fédéral central</region>
</placeName>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="inist">07-0195723</idno>
<date when="2007">2007</date>
<idno type="stanalyst">PASCAL 07-0195723 INIST</idno>
<idno type="RBID">Pascal:07-0195723</idno>
<idno type="wicri:Area/Main/Corpus">007F82</idno>
<idno type="wicri:Area/Main/Repository">007896</idno>
</publicationStmt>
<seriesStmt>
<idno type="ISSN">1386-9477</idno>
<title level="j" type="abbreviated">Physica ( E) low-dimens. syst. nanostrut.</title>
<title level="j" type="main">Physica. E, low-dimentional systems and nanostructures</title>
</seriesStmt>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Chemical equilibrium</term>
<term>Energy gap</term>
<term>Etching</term>
<term>Growth mechanism</term>
<term>Indium nitrides</term>
<term>MOVPE method</term>
<term>Microstructure</term>
<term>Nanostructured materials</term>
<term>Optical properties</term>
<term>Photoluminescence</term>
<term>Scanning electron microscopy</term>
<term>Thin films</term>
</keywords>
<keywords scheme="Pascal" xml:lang="fr">
<term>Méthode MOVPE</term>
<term>Gravure</term>
<term>Equilibre chimique</term>
<term>Propriété optique</term>
<term>Photoluminescence</term>
<term>Bande interdite</term>
<term>Microstructure</term>
<term>Mécanisme croissance</term>
<term>Microscopie électronique balayage</term>
<term>Indium nitrure</term>
<term>Nanomatériau</term>
<term>Couche mince</term>
<term>InN</term>
<term>8115K</term>
<term>7867</term>
<term>8107</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">InN films and nanorods were grown by hydride metalorganic vapor phase epitaxy (H-MOVPE) and the effects of growth temperature, and NH
<sub>3</sub>
/TMIn and HCl/TMIn ratios on morphological dependences were studied. The growth habit of InN varied from thin film to microrod to nanorod to no deposition as the growth conditions were changed about transition from growth to etching conditions. The growth and etch regimes were also predicted by chemical equilibrium calculations of In-C-H-Cl-N-inert system. The optical properties of InN nanorods and columnar structured films were measured by room temperature PL and a maximum intensity was observed at 1.08 eV for both structures.</div>
</front>
</TEI>
<inist>
<standard h6="B">
<pA>
<fA01 i1="01" i2="1">
<s0>1386-9477</s0>
</fA01>
<fA03 i2="1">
<s0>Physica ( E) low-dimens. syst. nanostrut.</s0>
</fA03>
<fA05>
<s2>37</s2>
</fA05>
<fA06>
<s2>1-2</s2>
</fA06>
<fA08 i1="01" i2="1" l="ENG">
<s1>Growth of InN films and nanorods by H-MOVPE</s1>
</fA08>
<fA09 i1="01" i2="1" l="ENG">
<s1>Proceedings of the E-MRS 2006 Symposium E: Science and Technology of Nanotubes and Nanowires, Nice, 29 May-2 June 2006</s1>
</fA09>
<fA11 i1="01" i2="1">
<s1>HYUN JONG PARK</s1>
</fA11>
<fA11 i1="02" i2="1">
<s1>KRYLIOUK (Olga)</s1>
</fA11>
<fA11 i1="03" i2="1">
<s1>ANDERSON (Tim)</s1>
</fA11>
<fA11 i1="04" i2="1">
<s1>KHOKHLOV (Dmitry)</s1>
</fA11>
<fA11 i1="05" i2="1">
<s1>BURBAEV (Timur)</s1>
</fA11>
<fA12 i1="01" i2="1">
<s1>FERRARI (Andrea C.)</s1>
<s9>ed.</s9>
</fA12>
<fA12 i1="02" i2="1">
<s1>HARTSCHUH (Achim)</s1>
<s9>ed.</s9>
</fA12>
<fA12 i1="03" i2="1">
<s1>DE JONGE (Niels)</s1>
<s9>ed.</s9>
</fA12>
<fA14 i1="01">
<s1>Department of Chemical Engineering, University of Florida, Gainesville, P.O. Box 116005</s1>
<s2>FL 32611-6005</s2>
<s3>USA</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
</fA14>
<fA14 i1="02">
<s1>Physics Department, Moscow State University</s1>
<s2>Moscow, 119992</s2>
<s3>RUS</s3>
<sZ>4 aut.</sZ>
</fA14>
<fA14 i1="03">
<s1>Lebedev Physical Institute</s1>
<s2>Moscow 119991</s2>
<s3>RUS</s3>
<sZ>5 aut.</sZ>
</fA14>
<fA15 i1="01">
<s1>University of Cambridge</s1>
<s2>Cambridge</s2>
<s3>GBR</s3>
<sZ>1 aut.</sZ>
</fA15>
<fA15 i1="02">
<s1>Universität München</s1>
<s2>München</s2>
<s3>DEU</s3>
<sZ>2 aut.</sZ>
</fA15>
<fA15 i1="03">
<s1>Oak Ridge National Laboratory</s1>
<s2>Oak Ridge, TN</s2>
<s3>USA</s3>
<sZ>3 aut.</sZ>
</fA15>
<fA18 i1="01" i2="1">
<s1>European Materials Research Society</s1>
<s2>Strasbourg</s2>
<s3>FRA</s3>
<s9>org-cong.</s9>
</fA18>
<fA20>
<s1>142-147</s1>
</fA20>
<fA21>
<s1>2007</s1>
</fA21>
<fA23 i1="01">
<s0>ENG</s0>
</fA23>
<fA43 i1="01">
<s1>INIST</s1>
<s2>145E</s2>
<s5>354000145632750290</s5>
</fA43>
<fA44>
<s0>0000</s0>
<s1>© 2007 INIST-CNRS. All rights reserved.</s1>
</fA44>
<fA45>
<s0>32 ref.</s0>
</fA45>
<fA47 i1="01" i2="1">
<s0>07-0195723</s0>
</fA47>
<fA60>
<s1>P</s1>
<s2>C</s2>
</fA60>
<fA61>
<s0>A</s0>
</fA61>
<fA64 i1="01" i2="1">
<s0>Physica. E, low-dimentional systems and nanostructures</s0>
</fA64>
<fA66 i1="01">
<s0>NLD</s0>
</fA66>
<fC01 i1="01" l="ENG">
<s0>InN films and nanorods were grown by hydride metalorganic vapor phase epitaxy (H-MOVPE) and the effects of growth temperature, and NH
<sub>3</sub>
/TMIn and HCl/TMIn ratios on morphological dependences were studied. The growth habit of InN varied from thin film to microrod to nanorod to no deposition as the growth conditions were changed about transition from growth to etching conditions. The growth and etch regimes were also predicted by chemical equilibrium calculations of In-C-H-Cl-N-inert system. The optical properties of InN nanorods and columnar structured films were measured by room temperature PL and a maximum intensity was observed at 1.08 eV for both structures.</s0>
</fC01>
<fC02 i1="01" i2="3">
<s0>001B80A15K</s0>
</fC02>
<fC02 i1="02" i2="3">
<s0>001B70H67</s0>
</fC02>
<fC02 i1="03" i2="3">
<s0>001B80A07Z</s0>
</fC02>
<fC03 i1="01" i2="X" l="FRE">
<s0>Méthode MOVPE</s0>
<s5>02</s5>
</fC03>
<fC03 i1="01" i2="X" l="ENG">
<s0>MOVPE method</s0>
<s5>02</s5>
</fC03>
<fC03 i1="01" i2="X" l="SPA">
<s0>Método MOVPE</s0>
<s5>02</s5>
</fC03>
<fC03 i1="02" i2="3" l="FRE">
<s0>Gravure</s0>
<s5>03</s5>
</fC03>
<fC03 i1="02" i2="3" l="ENG">
<s0>Etching</s0>
<s5>03</s5>
</fC03>
<fC03 i1="03" i2="3" l="FRE">
<s0>Equilibre chimique</s0>
<s5>04</s5>
</fC03>
<fC03 i1="03" i2="3" l="ENG">
<s0>Chemical equilibrium</s0>
<s5>04</s5>
</fC03>
<fC03 i1="04" i2="3" l="FRE">
<s0>Propriété optique</s0>
<s5>05</s5>
</fC03>
<fC03 i1="04" i2="3" l="ENG">
<s0>Optical properties</s0>
<s5>05</s5>
</fC03>
<fC03 i1="05" i2="3" l="FRE">
<s0>Photoluminescence</s0>
<s5>06</s5>
</fC03>
<fC03 i1="05" i2="3" l="ENG">
<s0>Photoluminescence</s0>
<s5>06</s5>
</fC03>
<fC03 i1="06" i2="3" l="FRE">
<s0>Bande interdite</s0>
<s5>07</s5>
</fC03>
<fC03 i1="06" i2="3" l="ENG">
<s0>Energy gap</s0>
<s5>07</s5>
</fC03>
<fC03 i1="07" i2="3" l="FRE">
<s0>Microstructure</s0>
<s5>08</s5>
</fC03>
<fC03 i1="07" i2="3" l="ENG">
<s0>Microstructure</s0>
<s5>08</s5>
</fC03>
<fC03 i1="08" i2="X" l="FRE">
<s0>Mécanisme croissance</s0>
<s5>09</s5>
</fC03>
<fC03 i1="08" i2="X" l="ENG">
<s0>Growth mechanism</s0>
<s5>09</s5>
</fC03>
<fC03 i1="08" i2="X" l="SPA">
<s0>Mecanismo crecimiento</s0>
<s5>09</s5>
</fC03>
<fC03 i1="09" i2="3" l="FRE">
<s0>Microscopie électronique balayage</s0>
<s5>10</s5>
</fC03>
<fC03 i1="09" i2="3" l="ENG">
<s0>Scanning electron microscopy</s0>
<s5>10</s5>
</fC03>
<fC03 i1="10" i2="3" l="FRE">
<s0>Indium nitrure</s0>
<s2>NK</s2>
<s5>15</s5>
</fC03>
<fC03 i1="10" i2="3" l="ENG">
<s0>Indium nitrides</s0>
<s2>NK</s2>
<s5>15</s5>
</fC03>
<fC03 i1="11" i2="3" l="FRE">
<s0>Nanomatériau</s0>
<s5>16</s5>
</fC03>
<fC03 i1="11" i2="3" l="ENG">
<s0>Nanostructured materials</s0>
<s5>16</s5>
</fC03>
<fC03 i1="12" i2="3" l="FRE">
<s0>Couche mince</s0>
<s5>18</s5>
</fC03>
<fC03 i1="12" i2="3" l="ENG">
<s0>Thin films</s0>
<s5>18</s5>
</fC03>
<fC03 i1="13" i2="3" l="FRE">
<s0>InN</s0>
<s4>INC</s4>
<s5>53</s5>
</fC03>
<fC03 i1="14" i2="3" l="FRE">
<s0>8115K</s0>
<s4>INC</s4>
<s5>60</s5>
</fC03>
<fC03 i1="15" i2="3" l="FRE">
<s0>7867</s0>
<s4>INC</s4>
<s5>61</s5>
</fC03>
<fC03 i1="16" i2="3" l="FRE">
<s0>8107</s0>
<s4>INC</s4>
<s5>62</s5>
</fC03>
<fN21>
<s1>128</s1>
</fN21>
</pA>
<pR>
<fA30 i1="01" i2="1" l="ENG">
<s1>E-MRS 2006 Symposium E</s1>
<s3>Nice FRA</s3>
<s4>2006-05-29</s4>
</fA30>
</pR>
</standard>
</inist>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=IndiumV3/Data/Main/Repository
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 007896 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Repository/biblio.hfd -nk 007896 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=   *** parameter Area/wikiCode missing *** 
   |area=    IndiumV3
   |flux=    Main
   |étape=   Repository
   |type=    RBID
   |clé=     Pascal:07-0195723
   |texte=   Growth of InN films and nanorods by H-MOVPE
}}

Wicri

This area was generated with Dilib version V0.5.77.
Data generation: Mon Jun 9 10:27:54 2014. Site generation: Thu Mar 7 16:19:59 2024